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Abstract
We introduce a heterogeneous fractional Fokker–Planck equation (HFFPE) on
heterogeneous fractal structure media describing systems involving external
force fields. The HFFPE is shown to obey the generalized Einstein relation,
and its stationary solution is the Boltzmann distribution. It is proven that the
asymptotic shape of its solution is a stretched Gaussian and that its solution can
be expressed in the form of a function of a dimensionless similarity variable
for constant and generic potentials with polar singularity at origin.

PACS numbers: 05.10.Gg, 05.45−a

1. Introduction

In recent years, much attention has been paid to physical systems driven by transport
mechanisms other than ordinary diffusion, in particular, diffusion in a disordered crystalline
medium. This leads to many anomalous physical properties [1]. In the physics of complex
systems, anomalous transport properties and their description have attracted considerable
interest. Applications have been found in a wide field ranging from physics and chemistry to
biology and medicine [1–5]. Anomalous diffusion in one dimension is characterized by the
occurrence of a mean square displacement of the form

X2 = 〈X2〉(t) = 〈〈�x〉2〉(t) = 2Kγ

�(1 + γ )
tγ (1.1)

which deviates from the linear Brownian dependence on time [3]. In equation (1.1), the
anomalous diffusion coefficient Kγ is introduced, which has the dimension [Kγ ] = cm2 s−γ .
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Recently in the literature, in order to describe diffusion processes in disordered media,
some authors have proposed an extension of the Fokker–Planck (FP) equation, which is called
the fractional Fokker–Planck equation (FFPE) [6–13].

A FFPE describing anomalous transport close to thermal equilibrium has been presented
recently [6]. Since it describes subdiffusion in the force-free case, it involves a strong, i.e.
slowly decaying, memory. In their original framework [9], Metzler et al gave a seminal
framework and investigated the anomalous diffusion and relaxation involving external fields
with the one-dimensional FFPE for one variable

Ẇ (x, t) = 0D
1−γ
t LFPW (1.2)

with respect to its physical properties. Here, W(x, t) is the probability density function (pdf )
at position x at time t, and the FP operator

LFP = ∂

∂x

(
V ′(x)

mηγ

+ Kγ

∂

∂x

)
(1.3)

with the external potential V (x) [15], contains the anomalous diffusion constant Kγ and the
anomalous friction coefficient ηγ with the dimension [ηγ ] = sγ−2. Herein, m denotes the
mass of the diffusion particle, and

0D
1−γ
t W = 1

�(γ )

∂

∂t

∫ t

0
dτ

W(x, τ )

(t − τ)1−γ
. (1.4)

The interesting part has asymptotic behaviour log W(x, t) ∼ −cξu where ξ ≡ x/tα/2 �
1 which is expected to be universal. Here, u = 1/(1 − α/2) with the anomalous diffusion
exponent α which is the order of the fractional derivative [14].

In [30], the FFPE

0D
α
t W(x, t) = Gx−θ ′

LFPW(x, t) (1.5)

has been presented, where G > 0 is to be determined, θ ′ � 0 is a parameter, 0 < α < 1, if
θ ′ = 0 then α = γ and equation (1.5) reduces to

0D
α
t W(x, t) = GLFPW(x, t) (1.6)

which leads to the FFPE (1.2). It is proven that for the FFPE (1.6), its solution has asymptotic
behaviour

log W(x, t) ∼ −cξu (1.7)

where

ξ ≡ x/tγ/2 � 1 u = 1
/(

1 − γ

2

)
(1.8)

and possesses a scaling variable for constant potential, linear potentials, logarithm potentials
and harmonic potentials.

El-Wakil and Zahranit [12] have discussed the fact that anomalous diffusion in a
heterogeneous fractal medium in one dimension is characterized by the occurrence of a
mean square displacement of the form

X2
θ = 〈〈�x〉2〉 ∼ x−θ tγ 0 < γ � 1 θ = dw − 2. (1.9)

We call θ a heterogeneous exponent and γ is known to be the diffusion exponent.
By a simple scaling consideration as in [17], according to equation (1.9) we require

that x−θ tγ ∼ x2, i.e. x ∼ t
γ

(2+θ) . Thus, we have that X2
θ ∼ t

2
(2+θ)

γ . Hence we can rewrite
equation (1.9) as

X2
θ = 〈〈�x〉2〉 = 2Kθ

γ

�(1 + γθ )
tγθ (1.10)
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where γθ = 2γ

2+θ
. In equation (1.10) the anomalous diffusion coefficient Kθ

γ is introduced,
which has the dimension

[
Kθ

γ

] = cm2 s−2γ /(2+θ). In equation (1.9), dw > 2 is the anomalous
diffusion exponent [1].

It is easy to see that for θ → 0, equation (1.10) reduces to equation (1.1) and Kθ
γ to Kγ .

So we naturally ask the following question. Does the FFPE with multi-parameters
α, θ, θ ′, γ and µ

0D
α
t W(x, t) = Gx−θ ′

L
µ

FPW(x, t) µ > 0 (1.11)

still possess the stretched Gaussian and a scaling variable for constant and generic potentials
where L

µ

FP = ∂
∂x

(
V ′(x)

mηγ
+ Kθ

γ
∂
∂x

x−µ
)
?

The main purpose of this paper is to solve this problem. By using the heuristic argument
of Giona and Roman [17], we introduce a FFPE on heterogeneous fractal structures which
can lead to the FFPE (1.5). It is proven that the asymptotic shape of its solution is a stretched
Gaussian and that its solution can be expressed in the form of a function of a dimensionless
similarity variable for constant and generic potentials.

2. The derivation of the FFPE with external potentials

In this section, we derive the fractional diffusion equation involving the external potential
V (x) by using the heuristic argument of Giona and Roman [17].

The relationship between the total flux of probability current S(x, t) from time t = 0 to
time t and the average probability density W(x, t), considered as the input and the output of
the fractal system [18] (cf [17]), should satisfy the following equation:∫ t

0
S(x, τ ) dτ = xdf −1

∫ t

0
K(t, τ )W(x, τ ) dτ (2.1)

where df is the fractal dimension of the system considered. This is a conservation equation
containing an explicit reference to the history of the diffusion process on a fractal structure.
Since we are dealing with stationary processes, we expect K(t, τ ) to be a function of difference
t − τ only, i.e. K(t, τ ) = K(t − τ). K(t, τ ) is the diffusion kernel. We assume that diffusion
sets are underlying fractals (underlying fractals denote self-similar sets in [19] or net fractals
in [20, 21]) and the diffusion kernel on the underlying fractal should behave as

K(t − τ) = Aα

(t − τ)α
(2.2)

with 0 < α < 1, where α is a diffusion exponent and Aα is a constant that can be determined
[21].

On the other hand, on the above fractional structure we propose that the probability current
S(x, t) satisfies the following structure equation:

S(x, t) = Bxdf −1x−θ ′ ∂

∂x

(
V ′(x)

mηγ

+ Kθ
γ

∂

∂x
x−µ

)
W(x, t) µ > 0 (2.3)

i.e.

S(x, t) = Bxdf −1x−θ ′
L

µ

FPW(x, t)

where B > 0 is to be determined, θ ′ is still a parameter and L
µ

FP = ∂
∂x

(
V ′(x)

mηγ
+ Kθ

γ
∂
∂x

x−µ
)

is
the FP operator.

From equations (2.1), (2.2) and (2.3), we have

0D
α
t W(x, t) = Gx−θ ′

L
µ

FPW(x, t) (2.4)
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where

G = B/�(1 − α)Aα > 0. (2.5)

We call equation (2.4) a heterogeneous fractional Fokker–Planck equation (HFFPE).
It is easy to see that for µ → 0, L

µ

FP reduces to the LFP and equation (2.4) to FFPE (1.5).
Furthermore, we suppose that the pdf W(x, t) satisfies the following normalization

conditions: ∫ ∞

0
dx · xdf −1W(x, t) = 1 (2.6)

and the extraction of moments 〈(�X)n〉 is defined by

〈(�X)n〉 =
∫ ∞

0
dx · xdf −1xnW(x, t). (2.7)

Remark 1. We know that the integral equation

1

�(ν)

∫ t

0

g(τ) dτ

(t − τ)1−ν
= G(t) t > 0 (2.8)

where 0 < ν < 1, is called Abel’s equation and for any summable function g(t) it has a unique
solution [25]

g(t) = 1

�(1 − ν)

d

dt

∫ t

0

G(τ) dτ

(t − τ)ν
. (2.9)

Conversely, if equation (2.9) holds, then equation (2.8) is satisfied for G(t)εIα
0 (L1), i.e. there

exists a summable function h(t) such that

G(t) = 1

�(ν)

∫ t

0

h(τ) dτ

(t − τ)1−ν
t > 0. (2.10)

Thus, from equation (2.4) we have

W(x, t) = 1

�(α)

∫ t

0
Gx−θ ′ L

µ

FPW(x, τ )

(t − τ)1−α
dτ (2.11)

for W(x, t)εIα
0 (L1). Hence

Ẇ (x, t) = 1

�(α)

∂

∂t

∫ t

0
Gx−θ ′ L

µ

FPW(x, τ )

(t − τ)1−α
dτ

i.e.

Ẇ (x, t) = Gx−θ ′
0D

1−α
t L

µ

FPW(x, t) (2.12)

where

0D
1−α
t W = 1

�(α)

∂

∂t

∫ t

0

W(x, τ ) dτ

(t − τ)1−α
. (2.13)

Especially, when G = 1, θ ′ = 0 and α = γ

Ẇ(x, t) = 0D
1−α
t L

µ

FPW. (2.14)

Equation (2.14) is just the one-dimensional FFPE (1.2). The derivation of equation (2.14) is
different from those in [9, 26]. This shows that the asymptotic equation (2.3) is reasonable.
Conversely, if W(x, 0) = 0 and equation (2.12) holds, then equation (2.4) is satisfied if
Gx−θ ′

L
µ

FPW(x, t) is a summable function.

If in the presence of an external nonlinear and time-independent field the stationary state
is reached, then S must be constant. Thus, if S = 0 for any x, it vanishes for all x [15], and the
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stationary solution is given by L
µ

FPW(x, t) = 0, i.e. V ′(x)Wst/(mηγ )+Kθ
γ d(x−µWst)/dx = C

(constant) from which the exponential result

Wst(x) = Aδxµ

{
C ′ exp

{
−

(∫
xµV ′(x) dx

/(
mηγ Kθ

γ

))}
+ C

[
mηγ

AδxµV ′(x)

− e− ∫
xµV ′(x) dx/(mηγ Kθ

γ )

∫
e
∫

xµV ′(x) dx/(mηγ Kθ
γ ) d

(
mηγ

AδxµV ′(x)

)]}
(2.15)

can be inferred, where δ = µ/(µ+ 1) < 1 and C ′ is a constant. Requiring, in analogy with the
standard case, that Wst is given by the generalized Boltzmann distribution in a heterogeneous
fractal medium, i.e.

Wst ∝ xµ exp

{
−

∫
xµV ′(x) dx/(kBT )

}
(2.16)

C must be equal to zero. Thus, the generalized Einstein–Stocks–Smoluchowski relation

Kθ
γ = kBT

mηγ

(2.17)

is readily recovered. Thus, the FFPE (2.4) obeys some generalized fluctuation–dissipation
theorem.

It is easy to see that for µ → 0 the generalized Boltzmann distribution (2.16) and Einstein
relation (2.17) reduce to the well-known Boltzmann distribution Wst ∝ exp{−V (x)/(kBT )}
and Einstein relation Kγ = kBT /(mηγ ), respectively.

We can anticipate the relation between exponents α, γ, θ, µ and θ ′ by simple scaling
considerations. From equation (2.4) we see that tα ∼ x2+θ ′+µ, and according to equation (1.9)
we require that tγ ∼ x2+θ . Thus

α = γ

(
2 + µ + θ ′

2 + θ

)
. (2.18)

Corresponding to the value θ ′ = 0, the new lower bound α � γ follows from equation (2.18).
From the upper bound α < 1, equation (2.18) follows the upper bound for θ ′

θ ′ <
(2 + θ)

γ
− (α − µ). (2.19)

3. Solutions and the properties of the HFFPE

In this section we give the solutions of the FFPE (2.4).
It can be shown that the Laplace transform of the fractional derivative 0D

α
t W(x, t) is

L
[

0D
α
t W(x, t)

] = sαW(x, s).

Using this result, from equation (2.4) we obtain

sαW(x, s) = Gx−θ ′ ∂

∂x

[
V ′(x)

mηγ

W(x, s) + Kθ
γ

∂x−µW(x, s)

∂x

]
(3.1)

where W(x, s) denotes the Laplace transform of W(x, t).

Case I: Constant potential. First we consider the constant potential V (x) = constant, leading
to the force-free case. In this case, equation (3.1) reduces to

x2 ∂2W(x, s)

∂x2
− 2µx

∂W(x, s)

∂x
− [qx2+µ+θ ′ − µ(µ + 1)]W(x, s) = 0 (3.2)
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where q = sα/Gγ , Gγ = GKθ
γ . In order to solve equation (3.2), it is convenient to perform

the transformation

y = A(s)xv W(x, s) = yδZ(y) (3.3)

to cast equation (3.2) into the second-order Bessel equation as

y2 d2Z

dy2
+ y

dZ

dy
− (λ2 + y2)Z = 0 (3.4)

with parameter λ2 under the following conditions:

v = 2 + µ + θ ′

2
A(s) = q1/2

v
δ = 1

2v
(1 + 2µ) (3.5)

where

λ2 = 2δµ

v
− δ

(
δ − 1

v

)
− µ(µ + 1)

v2
= 1/4v2. (3.6)

The solution of this equation, satisfying the summability condition limx→+∞ W(x, t) = 0, i.e.
W(x, s) = 0 (x → +∞), is given by Z(y) = C(s)Kλ(y) since y → +∞

Kλ(y) = e−y

(
π

2y

)1/2 [
1 + O

(
1

y

)]
(3.7)

in the domain |arg y| < 3
2π , where Kλ is the modified Bessel function of second order and

C(s) is to be determined. So the solution of equation (3.2) is given by

W(x, s) = C(s)yδKλ(y) y = A(s)xv (3.8)

where

C(s) = G′s(αdf /2v)−1 G′ = v1−df /v
/[

Cλ

(
GKθ

γ

)df /2v]
(3.9)

ensures the normalization condition (2.6) of W(x, t), i.e.
∫ ∞

0 dx · xdf −1W(x, s) = 1/s, if and

only if 0 < λ < 1. Cλ = ∫ ∞
0 dy · y

df

v
+δ−1Kλ(y) is a constant since [28]∫ ∞

0
dy · yνKλ(ay) = 2ν−1a−ν−1�

(
1 + ν + λ

2

)
�

(
1 + ν − λ

2

)
.

It is easy to see from equations (1.10) and (2.7) (when n = 2) that

α =
(

2 + µ + θ ′

2 + θ

)
γ B = Aα�(1 − α)

v2

(
2
Cλ

C ′
λ

)v

Kθ
γ

v−1
(3.10)

since
∫ ∞

0 dx · xdf −1x2W(x, s) = 2Kθ
γ

/
s2γ /(2+θ)+1 corresponding to the Laplace transform of

〈〈�x〉2〉(t). C ′
λ = ∫ ∞

0 dy · y
df +2

v
+δ−1Kλ(y).

Let us now discuss the asymptotic behaviour of W(x, t) as predicted by equation (3.8).
We have

W(x, s) ≈ G′′s−(1−αdf /2v) 1

(xsα/2v)κ
exp{−(xsα/2v/G′′′)v} (3.11)

for |xsα/2v| � 1, where G′′ = √
π
2 v1−(df +κ)/v/Cλ

(
GKθ

γ

)(df +κ)/2v
> 0,G′′′ = [

v
√

GKθ
γ

]1/v
,

κ = v
(

1
2 − δ

)
.

Using the same method as in [17], we expect that

W(x, t) ∼ t−(αdf /2v)(x/Xθ)
δ′

exp{−const × (x/Xθ)
u′ } (3.12)
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when x/Xθ ∼ x/tγ/(2+θ) � 1 and t → +∞. The Laplace transform of equation (3.12) can be
evaluated by applying the method of steepest descent and the result compared with equation
(3.11). This yields

u′ = v
/(

1 − α

2

)
(3.13)

and

δ′ = u′ [ 1
2 (αdf /v − 1) − κ

]
. (3.14)

It is interesting that if µ = θ = θ ′ = 0, we have u′ = 1
/(

1 − γ

2

)
and δ′ = u′[ 1

2 (γ df − 1)
]
,

which are the same of those of FFPE [30].
Using the inversion theorem of Laplace transform, from equation (3.11) we have (see the

appendix)

W(x, t) ≈ G′′

π
t−αdf /2vz−κf (z) (3.15)

where

f (z) =
∞∑

n=0

Cn(β)znv z = x/tα/2v β = α(df − κ)/2v − 1.

In particular, for z � 1,W(x, t) ≈ G′′C0(β)

π
t−αdf /2vz−κ ; thus, if κ > 0,W(x, t) diverges

on the origin.

Case II: Generic potentials. Now we discuss the general case. In this case, equation (3.1)
becomes

x2 ∂2W(x, s)

∂x2
+

(
V ′(x)x1+µ

mθ
γ

− 2µ

)
x

∂W(x, s)

∂x

−
[
qx2+µ+θ ′ − µ(µ + 1) − V ′′(x)x2+µ

mθ
γ

]
W(x, s) = 0 (3.16)

where q = sα
/
GKθ

γ ,mθ
γ = mηγ Kθ

γ .

We assume that the generic external potential at the origin is given by

V (x) = bpx−p (p �= 0) and V (x) = bpln(x) (p = 0) (3.17)

where bp �= 0.

In order to solve equation (3.16), it is convenient to perform the transform y =
A(s)xv,W(x, s) = yδZ(y) to cast equation (3.16) into the second-order Bessel equation
as

y2 d2Z

dy2
+ y

dZ

dy
− (

λ2
g + y2)Z = 0 (3.18)

with parameter λ2
g under the following conditions:

v = 2 + µ + θ ′

2
A = q1/2/v = sα/2/v

√
GKθ

γ (3.19)

δg = 1 + 2µ

v
− 1

2vmθ
γ

V ′
(( y

A

) 1
v

)( y

A

) 1+µ

v

(3.20)
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where

λ2
g = 2µδg

v
− µ(µ + 1)

v2
− δg

(
δg − 1

v

)
− V ′′( (

y

A

) 1
v
) (

y

A

) 2+µ

v

v2mθ
γ

− δg

vmθ
γ

V ′
(( y

A

) 1
v

) ( y

A

) 1+µ

v

. (3.21)

Noting for Re(sα/2)/y � 1, y/|A| � 1, if µ − p > 0, and for Re(sα/2)/y � 1,

y/|A| � 1, if µ − p < 0, from equation (3.17), we have
(

y

A

) 1+µ

v V ′(( y

A

) 1
v
) � 1 and(

y

A

) 2+µ

v V ′′(( y

A

) 1
v
) � 1. Then from equations (3.20) and (3.21), we have

δg ≈ 1 + 2µ

2v
= δ λg ≈ 1

4v2
= λ. (3.22)

Thus, equation (3.18) can be replaced by

y2 d2Z

dy2
+ y

dZ

dy
− (λ2 + y2)Z = 0. (3.4)

Hence, if µ �= p, we have

w(x, t) ∼ t−(αdf /2v)

(
x

Xθ

)δ′

exp

{
−const ×

(
x

Xθ

)u′}
(3.23)

where x/Xθ ∼ x/tγ/(2+θ) � 1 and t → +∞,

u′ = v
/(

1 − α

2

)
(3.24)

δ′ = u′
[

1

2
(αdf /v − 1) − κ

]
(3.25)

κ = v

(
1

2
− δ

)
(3.26)

and

W(x, t) ≈ G′′

π
t−αdf /2vz−κf (z) (3.27)

where

f (z) =
∞∑

n=0

Cn(β)znv z = x/tα/2v β = α(df − κ) − 1. (3.28)

If µ = p �= 0, for Re(sα/2/y) � 1, since( y

A

) 1+µ

v

V ′
(( y

A

) 1
v

)
≈ −pbp

( y

A

) 2+µ

v

V ′′
(( y

A

) 1
v

)
≈ p(p + 1)bp

we have

δg ≈ 1 + 2µ

2v
+

pbp

2vmθ
γ

= δp (3.29)

λg ≈ 1

4v2

(
1 +

pbp

mθ
γ

)2

= λ2
p. (3.30)

Similarly, if µ = p = 0, for Re(sα/2/y) � 1, since( y

A

) 1+µ

v

V ′
(( y

A

) 1
v

)
= b0

( y

A

) 2+µ

v

V ′′
(( y

A

) 1
v

)
= −b0
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we have

δg ≈ 1+

2v
− b0

2vmθ
γ

= δ0 (3.31)

λg ≈ 1

4v2

(
1 − b0

mθ
γ

)2

= λ2
0. (3.32)

In this case, equation (3.18) can be replaced by

y2 d2Z

dy2
+ y

dZ

dy
− (

λ2
p + y2)Z = 0. (3.33)

As in the discussion of case I, we have

W(x, t) ∼ t−(αdf /2v)(x/Xθ)
δ′

exp{−const × (x/Xθ)
u′ } (3.34)

where x/Xθ ∼ x/tγ/(2+θ) � 1 and t → +∞,

u′ = v
/(

1 − α

2

)
(3.35)

δ′ = u′
[

1

2
(αdf /v − 1) − κp

]
(3.36)

κp = v

(
1

2
− δp

)
(3.37)

and

W(x, t) ≈ G′′

π
t−αdf /2vz−κpf (z) (3.38)

where

f (z) =
∞∑

n=0

Cn(β)znv z = x/tα/2v β = α(df − κp) − 1. (3.39)

Remark 2. It is worth pointing out that, for θ → 0, since equation (1.10) reduces to
equation (1.1) and Kθ

γ → Kγ , with the above discussion and results, the solution of FFPE
(2.4) with respect to equation (1.1) has the asymptotic behaviour

W0(x, t) ∼ t−(αdf /2v)(x/Xθ)
δ′

exp{−const × (x/Xθ)
u′ } (3.40)

when x/X ∼ x/tγ/2 � 1 and t → +∞. It possesses a scaling variable, i.e.

W0(x, t) ≈ G′′
0

π
t−αdf /2vz−κ0f0(z) (3.41)

f0(z) =
∞∑

n=0

Cn(β0)z
nv z = x/tα/2v β0 = α(df − κ0)/2v − 1

where

α = vγ v = (2 + µ + θ ′)/2 (3.42)

and

u′ = v
/(

1 − α

2

)
δ′ = u′

[
1

2
(ds − 1) − κ0

]
. (3.43)
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For the constant potentials and the generic potentials of equation (3.17) with u �= p

κ0 = v

(
1

2
− δ

)
δ = 1 + 2µ

2v
(3.44)

and for the generic potentials of equation (3.17) with u = p �= 0

κ0 = v
(

1
2 − δp

)
(3.45)

where δp is given by equations (3.29) or (3.31) for µ = p �= 0 and µ = p = 0, respectively.

ds = γ df is called the fraction or spectral dimension [22, 23].

4. Conclusion and discussion

In order to describe anomalous diffusion processes involving external potential fields on
heterogeneous fractal structures, we introduce a HFFPE. Its solution possesses the following
properties. The necessary and sufficient condition of its stationary solution, which is the
generalized Boltzmann distribution, is that the generalization of the Einstein relation is also
preferred as the Stocks–Einstein–Smoluchowski relation holds

Kθ
γ = kBT /mηγ

for the anomalous coefficients Kγ and ηγ . For θ → 0 and θ ′ = 0 this result is consistent with
that in [9].

There exists an intrinsic relationship α = γ
( 2+µ+θ ′

2+θ

)
between γ, α, θ, µ and θ ′. γ , θ

and α are structural parameters of the underlying fractal structure and α can be determined
explicitly; see [18–20]. If θ ′ = 0 and µ = θ then α = γ .

The solution of the FFPE has asymptotic behaviour log W(x, t) ∼ −cξu where
ξ ≡ x/tγ/2 � 1, u = v

/(
1 − α

2

)
, v = (2 + µ + θ ′)/2, and possesses a scaling variable for

constant and generic potentials.
If θ tends to zero, we obtain the corresponding results for the FFPE on homogeneous

fractal structures.
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Appendix

Using the inversion theorem of Laplace transform, from equation (3.11) we have

W(x, t) = G0

π

∫ ∞

0
τβ exp{−[tτ + G2τ

α cos απ ]} sin[G2τ
α sin απ − βπ ] dτ

= G0

π
t−β−1

∫ ∞

0
y exp{−[y + G2(y/t)α cos απ ]} sin[G2(y/t)α sin απ − βπ ] dy

(A.1)

where

G2 = xθ ′+1

(θ ′ + 1)GKθ
γ

.
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Using the expressions of power series of entire-functions ez, cos z and sin z and the integral
representation of the � function, a simple integration of equation (A.1) yields the following
expression with the dimensionless similarity variable z = x/tα/2v:

W(x, t) = G′′

π
t−αdf /2vz−κf (z) (A.2)

where

f (z) =
∞∑

m=0

Cm(β)zmv

C0 = a′�(γ df /2) > 0 Cm(β) = a′bm + b′am−1

am(β) =
∑

k,n�0,2k+1+n=m

(−1)k+n a2k+1bn

(2k + 1)!n!
Cm+1�

(
β + 1 +

α

2
(2k + 1 + n)

)
( A.3)

bm(β) =
∑

k,n�0,2k+n=m

(−1)k+n a2kbn

(2k)!n!
Cm�

(
β + 1 +

α

2
(2k + n)

)

a′ = −sin βπ > 0 b′ = cos βπ a = sin
α

2
π/G′′′ b = cos

α

2
π/G′′′.
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